منابع مشابه
Sonoluminescence as quantum vacuum radiation.
Sonoluminescence is explained in terms of quantum radiation by moving interfaces between media of different polarizability. It can be considered as a dynamic Casimir effect, in the sense that it is a consequence of the imbalance of the zero-point fluctuations of the electromagnetic field during the non-inertial motion of a boundary. The transition amplitude from the vacuum into a two-photon sta...
متن کاملQuantum-dot all-optical logic in a structured vacuum
We demonstrate multiwavelength channel optical logic operations on the Bloch vector of a quantum two-level system in the structured electromagnetic vacuum of a bimodal photonic crystal waveguide. This arises through a bichromatic strong-coupling effect that enables unprecedented control over single quantum-dot (QD) excitation through two beams of ultrashort femtojoule pulses. The second driving...
متن کاملQuantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency.
We develop a general theory of the quantum vacuum radiation generated by an arbitrary time modulation of the vacuum Rabi frequency of an intersubband transition in a doped quantum well system embedded in a planar microcavity. Both nonradiative and radiative losses are included within an input-output quantum Langevin framework. The intensity and the spectral signatures of the extra-cavity emissi...
متن کاملDynamics of entangled quantum optical system in independent media
We study the dynamics of two three-level atoms interacting with independent bosonic Lorentzian reservoirs at zero temperature. Such systems can be created in far astronomical objects. Quantum mechanical behaviour of these particles can produce detectable effects on the spectroscopic identifications of these objects, if such behaviour remain stable during the interaction with their media. It is ...
متن کاملQuantum interference in optical fields and atomic radiation
We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the firstand second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2012
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.85.084014